Effect of oxygen plasma etching on graphene studied using Raman spectroscopy and electronic transport measurements

نویسندگان

  • Isaac Childres
  • Luis A. Jauregui
  • Jifa Tian
  • Yong P. Chen
  • Luis A Jauregui
  • Yong P Chen
چکیده

In this paper, we report a study of graphene and graphene field effect devices after their exposure to a series of short pulses of oxygen plasma. Our data from Raman spectroscopy, back-gated field-effect and magnetotransport measurements are presented. The intensity ratio between Raman ‘D’ and ‘G’ peaks, ID/IG (commonly used to characterize disorder in graphene), is observed to initially increase almost linearly with the number (Ne) of plasma-etching pulses, but later decreases at higher Ne values. We also discuss the implications of our data for extracting graphene crystalline domain sizes from ID/IG. At the highest Ne value measured, the ‘2D’ peak is found to be nearly suppressed while the ‘D’ peak is still prominent. Electronic transport measurements in plasma-etched graphene show an up-shifting of the Dirac point, indicating hole doping. We also characterize mobility, quantum Hall states, weak localization and various scattering lengths in a moderately etched sample. Our findings are valuable for understanding the effects of plasma etching on graphene and the physics of disordered graphene through artificially generated defects. 4 Author to whom any correspondence should be addressed. New Journal of Physics 13 (2011) 025008 1367-2630/11/025008+12$33.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Raman spectroscopy of lithographically patterned graphene nanoribbons.

Nanometer-scale graphene objects are attracting much research interest because of newly emerging properties originating from quantum confinement effects. We present Raman spectroscopy studies of graphene nanoribbons (GNRs), which are known to have nonzero electronic bandgap. GNRs of width ranging from 15 to 100 nm have been prepared by e-beam lithographic patterning of mechanically exfoliated g...

متن کامل

Conductance of T-shaped Graphene nanodevice with single disorder

Disordered T-shaped graphene nanodevice (TGN) was designed and studied in this paper. We demonstrated the intrinsic transport properties of the TGN by using Landauer approach. Knowing the transmission probability of an electron the current through the system is obtained using Landauer-Buttiker formalism. The effects of single disorder on conductance, current and on the transport length scales a...

متن کامل

Conductance of T-shaped Graphene nanodevice with single disorder

Disordered T-shaped graphene nanodevice (TGN) was designed and studied in this paper. We demonstrated the intrinsic transport properties of the TGN by using Landauer approach. Knowing the transmission probability of an electron the current through the system is obtained using Landauer-Buttiker formalism. The effects of single disorder on conductance, current and on the transport length scales a...

متن کامل

X-ray radiation effects in multilayer epitaxial graphene

We characterize multilayer graphene grown on C-face SiC before and after exposure to a total ionizing dose (TID) of 12 Mrad(SiO2) using a 10 keV X-ray source. While we observe the partial peeling of the top graphene layer and the appearance of a modest Raman D-peak, we find that the electrical characteristics (mobility, sheet resistivity, free carrier concentration) of the material are mostly u...

متن کامل

Considering the Effect of Oxygen Group on the Magnetic Properties of Reduced Graphene oxides (RGOs)

Improved magnetic characters of graphene oxides besides its unique biocompatibility make this compound as a theranostics agent could be so practical in the medicine fields. Oxygen functionalities with disturbing the symmetry of graphene sublattices could induce magnetic moments and improve magnetic properties in these structures­. While that, vacancies and distortions, created by oxygen release...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013